Analysis of Artificial Intelligence tools in the Detection of cyber threats in Real Time in the educational sector

Authors

  • Gustavo Enrique Tabares Parra Fundación Universitaria del Área Andina Author
  • Camilo Augusto Cardona Patiño Fundación Universitaria del Área Andina Author
  • Claudia Patricia Ramírez Triana Fundación Universitaria del Área Andina Author
  • Helber Leandro Baez Rodríguez Fundación Universitaria del Área Andina Author

DOI:

https://doi.org/10.61283/hyqney43

Keywords:

education, cybersecurity, IA, security tools, data protection

Abstract

 The current proposal investigated the integration of cybersecurity tools based on artificial intelligence (AI) in the educational context. The objective set was to identify the most effective technologies for protecting sensitive information in educational institutions. For the development, a qualitative methodology was employed, involving an exhaustive exploration of literature related to key trends and tools. Subsequently, a comparative analysis of these tools was conducted based on their effectiveness, adaptability, and ease of implementation.

The results obtained demonstrated that AI has the potential to detect and respond quickly to potential threats, which optimizes the management of cybersecurity through task automation processes while promoting a stronger security culture among students and employees. It was concluded that the adoption of the evaluated technologies helps to strengthen computer security, while improving resource management, promoting a safe and resilient educational environment.

Downloads

Download data is not yet available.

Author Biographies

  • Camilo Augusto Cardona Patiño, Fundación Universitaria del Área Andina

    Ingeniero de sistemas, magister en educación con amplia experiencia en educación superior e investigación en el campo de las TIC.

  • Claudia Patricia Ramírez Triana, Fundación Universitaria del Área Andina

    Ingeniero de Sistemas con enfasis en telecomunicaciones con amplía experiencia en el sector educativo e investigativo en el area tecnológica.

  • Helber Leandro Baez Rodríguez, Fundación Universitaria del Área Andina

    Ingeniero de sistemas con enfasis en seguridad de la información, apmplia trayctoria en procesos de gestión académica en apoyo a comunidad institucional.

References

Alhogail, A., & Alsabih, M. (2021). Using NLP for cyber threat detection and analysis in social engineering attacks. Journal of Cybersecurity and Privacy, 3(2), 99-114. https://doi.org/10.3390/jcp3020006

Anchala Sanez, Mauricio Rodolfo (2024) Propuesta de gestión de incidentes de seguridad, mediante la integración de inteligencia de amenazas para la contención de ataques informáticos. Maestría en Seguridad Informática, Quito: Universidad Israel 2024, 50p. Mg. Toasa Guachi Renato Mauricio Ph.D. Urdaneta Herrera Maryory, UISRAEL-EC-MASTER-SEG-INF-ART- 378.242-2024-002 http://repositorio.uisrael.edu.ec/handle/47000/4184

Arazzi, E., Gao, J., & Xu, S. (2023). Recent advancements in machine learning for cybercrime prediction. arXiv preprint arXiv:2304.04819. https://arxiv.org/abs/2304.04819

Arango, O. D. (2022). Detección de amenazas informáticas de tipo Malware Bancario o Ransomware Móvil hacia dispositivos Android, integrando IOC en una técnica semiautomatizada y con base en comportamientos analizados de incidentes.. Recuperado de: http://hdl.handle.net/20.500.12622/5700.

Arfeen, Muhammad & Ahmed, Saad & Khan, Muhammad & Jafri, Syed. (2021). Endpoint Detection & Response: A Malware Identification Solution. 1-8. 10.1109/ICCWS53234.2021.9703010

Basheer, R., Ali, F., & Jones, R. (2021). AI and NLP for phishing email detection: Approaches and challenges. Computers & Security, 103, 102155. https://doi.org/10.1016/j.cose.2021.102155

Castro Maldonado, John. (2022). Análisis de riesgos y vulnerabilidades de seguridad informática aplicando técnicas de inteligencia artificial orientado a instituciones de educación superior. 1. 151. https://www.researchgate.net/publication/359379099_analisis_de_riesgos_y_vulnerabilidades_de_seguridad_informatica_aplicando_tecnicas_de_inteligencia_artificial_orientadoa_instituciones_de_educacion_superior

Cisco. (2021). Cisco SecureX: Data Sheet. Cisco Systems, Inc. https://www.cisco.com/c/en/us/products/collateral/security/securex/secure-x-datasheet.pdf

CrowdStrike - Nexsys Colombia. (n.d.). Nexsys Colombia. https://www.nexsysla.com/co/fabricantes-nexsys/crowdstrike/

García V, et al (2020). La inteligencia artificial en la educación. https://dialnet.unirioja.es/servlet/articulo?codigo=8231632

G Karantzas, C Patsakis - Journal of Cybersecurity and Privacy, 2021 - mdpi.com. An empirical assessment of endpoint detection and response systems against advanced persistent threats

IBRAHIM, A. (2022). Breaking Barriers: How AI and ML are Redefining Cybersecurity Defense. https://www.researchgate.net/profile/Ibra-Him-5/publication/380152244_Breaking_Barriers_How_AI_and_ML_are_Redefining_Cybersecurity_Defense_AUTHORSIBRAHIM_A/links/662d7d3108aa54017ac8933c/Breaking-Barriers-How-AI-and-ML-are-Redefining-Cybersecurity-Defense-AUTHORSIBRAHIM-A.pdf

IBRAHIM, A. (2022). Guardians of the Virtual Gates: Unleashing AI for Next-Gen Threat Detection in Cybersecurity. https://www.researchgate.net/profile/Ibra-Him-5/publication/380152167_Guardians_of_the_Virtual_Gates_Unleashing_AI_for_Next-Gen_Threat_Detection_in_Cybersecurity/links/662d7f257091b94e93e01a9f/Guardians-of-the-Virtual-Gates-Unleashing-AI-for-Next-Gen-Threat-Detection-in-Cybersecurity.pdf

Martín Martín, M. L. (2024). Inteligencia Artificial: Un estudio de su impacto en Ciberseguridad. https://openaccess.uoc.edu/handle/10609/150519

Nolasco-Mamani, M. A., Vidaurre, S. M. E., & Choque-Salcedo, R. E. (2022). Innovación y Transformación Digital en la Empresa. ACVENISPROH Académico. https://acvenisproh.com/libros/index.php/Libros_categoria_Academico/article/view/49

Nurmi, T. (2021). Network detection and reaction: case study: proof of concept for Vectra implementation. https://www.theseus.fi/handle/10024/511234

Quinn, J., Mceachen, J., Fullan, M., Gardner, M., & Grummy, M. (2021). Sumergirse en el aprendizaje profundo herramientas atractivas. Safekat. https://edmorata.es/wp-content/uploads/2021/04/FULLAN.-Sumergirse-en-el-Aprendizaje-Profundo_prw.pdf

Toquiantzi, S. J. (2022). Facultad de ingeniería (Doctoral dissertation, Benemérita Universidad de Puebla). https://repositorioinstitucional.buap.mx/server/api/core/bitstreams/e8369c4e-25d9-4d83-9f5c-966c45e890de/content

Vikhyath, K. B., Kubsad, S. S., & Sunidhi, A. G. (2022, December). Survey on Data Security with Intersection of AI and Blockchain. In 2022 Fourth International Conference on Cognitive Computing and Information Processing (CCIP) (pp. 1-7). IEEE. https://ieeexplore.ieee.org/abstract/document/10058639

Yaseen, A. (2023). AI-DRIVEN THREAT DETECTION AND RESPONSE: A PARADIGM SHIFT IN CYBERSECURITY. International Journal of Information and Cybersecurity, 7(12), 25–43. Retrieved from https://publications.dlpress.org/index.php/ijic/article/view/73

Yin, C., Han, J., & Wu, S. (2021). Sentiment analysis and NLP applications in cybersecurity. IEEE Access, 9, 108550-108565. https://doi.org/10.1109/ACCESS.2021.3092902

Downloads

Published

2024-12-30

Issue

Section

Articles

How to Cite

Tabares Parra, Gustavo Enrique, Camilo Augusto Cardona Patiño, Claudia Patricia Ramírez Triana, and Helber Leandro Baez Rodríguez. 2024. “Analysis of Artificial Intelligence Tools in the Detection of Cyber Threats in Real Time in the Educational Sector”. International Journal of Research and Transfer in Communication and Social Sciences 3 (2): 114-33. https://doi.org/10.61283/hyqney43.

Similar Articles

1-10 of 25

You may also start an advanced similarity search for this article.